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1. INTRODUCTION

A phenomenon that pervades the whole of mathematics is that one and the
same function or functional can masquerade in several different guises. As
examples that are relevant to interpolatory function theory one can cite the
following: Over g;3' the set of polynomials of degree :(; 3, the functional
L1(f) = (l/6)(f(0) + 4f(l/2) + j(O)) is identical to the functional L2(f) =
S~j(x) dx. Over the space of single-valued analytic functionsj(z) in I z [ < 1,
the functional Llf) = Scf(z) dz, where c: I z I = t, is identical to the
functional Lif) - O.

Behind the identity of ostensibly different functionals, there lurks the notion
of an appropriate space of functions for which the identity is valid. Thus,
while L1 = L2forfE g;3' the identity may fail forfE G;4' L3fails to equal L4

for all continuous complex-valued functions in I z I < 1.
Given two functionals L 1 and L 2 , one can consider a subspace M of all

functions on which L1and L 2 are identical. That is, LICf) = Lif).!E M or
L 1 - L 2 .-L M. But very often what one may really want to know is whether
or not M contains some particular space of importance to analysis.

For reasons outlined in [2] and [8] having to do with the construction of
"complete quadrature rules," we have been concerned with the question of
when and how a double integral of an analytic function over a region B
can be expressed, either as an integral over an open arc contained in B or as
a differential operator acting at certain points of B, or a combination of these.

This paper extends results previously obtained in this direction. It is felt

* This work was carried out in part under the sponsorship of the Office of Naval Research
under Contract NOill 562(36) with Brown University.
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DOUBLE INTEGRALS AS SINGLE INTEGRALS

that the results are interesting in their own right, and applications will not be
indicated in any detail.

2. SOME USEFUL FORMULAS

In this section we collect some useful formulas. In the complex plane, write

z = x + iy,

x = (1/2)(z + z),

Introduce the operators

o 1 0 o'-=-(--i-)oz 2 \ ox oy ,

z = x - (v,

y = (1/20(z - z)
(2.1)

(2.2)

dz = dx - i c(v = di.dz = dx + i dy,

If1(z) = u(x, y) + iv(x, y), then

(ol/oz) = (1/2)(lIx + iu x - illy + vy),

(Of/oz) = (l/2)(ux + it·x + illy - LOy).

If1 is analytic then Ux = Dy , U y = -Vx and

(cj/oz) = lIx + iv x = 1'(z),

(81/oz) = o.

(2.2.1 )

(2.3)

(2.4)

Writing fez) for the antianalytic function u - iv, we obtain, similarly,

cf(z) = 0
~ ,
oZ

cz~z) = f'(z).
oz "

(2.5)

If B is a point set in the complex plane, the point set B (the reflection of B)
is given by B = {z : z E B}.

If fez) is analytic in the region B, the "reflected" function fez) is that
analytic function defined in B and given by

Note that we have

lez) = fez).

fez) = fez).

(2.6)

(2.7)
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Green's theorem, written in complex form and valid for analytic functionsf
and g, is given by the alternate forms

Lf f'(z) g(z) dx dy = ii LBf(z) g(z) dz.

Here 8B designates the boundary of B traversed in the positive sense.

f f f(z) g'(z) dx dy = - ;. f fez) g(z) dz
B -loB

or

(2.8)

(2.9)

(2.11)

f f f'(z) g'(z) dx dy = i· f fez) g'(z) dz = - i· J f'(z) g(z) dz.
BloB 1 oB (2.10)

In particular, withf(z) = z,

L f g(z) dx dy = ii fOB zg(z) dz.

Sufficient conditions for the validity of these formulas are that f and g be
analytic in B and continuously differentiable on 8B.

The Schwarz Function of a Plane Curve

Suppose that a curve C in the complex plane is given by an equation in
rectangular coordinates

4>(x, y) = o.

Introducing z and z we obtain as an equation

4> (z + Z z - Z) = 0
2 '2i .

(2.12)

(2.13)

The coordinates z and z are sometimes referred to as minimal or conjugate
coordinates. Assume now that we can solve (2.13) for z in terms of z:

z = S(z). (2.14)

If 4> is analytic, then except in the vicinity ofcertain singular points, we obtain
an analytic function as a solution of (2.13). We shall call S(z) the Schwarz
function of the curve C. See [6, 15]. No allusion to the Schwarz functions
that arise in the theory of automorphic functions is intended here. If 4> is an
algebraic function of x, y then S(z) is an algebraic function: it is an analytic
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multivalued function of z. If C is a closed analytic curve then S(z) has a
single-valued analytic branch in an annulus-like region that contains C in its
interior.

The following is a list of elementary properties of the Schwarz function.
All equations are to be understood as holding along C.

z = S(z). (2.15)

i Z ) i (. S(z) ,e= -log 1- = -100" -,-l. (2.16)
2 \z 2 b. Z /

S'(z) = dz = dx - i dy
dz dx + i dy

, . 1 - S'(z)
y = -[ 1 + S'(z) .

I S'(z)[ = 1,

1 - iy'

1 + (v'
(2.17)

(2.18)

(2.19)

If a curve with Schwarz function S(z) passes through Zl' the equation of
the tangent line at Zl is

(2.20)

The angle of intersection ebetween two curves with Schwarz functions S
and T is given by

. 'S' - T'
tan e = [ ( S' + T' ). (2.21)

In particular, if at a common point, S' = T', the two curves are tangent,
while if S' = - T', the curves are orthogonal.

d 2y 4iS"(z)
dx2 (1 + S'(Z»3 '

dz dz = (dx + i dy)(dx - i dy) = dx2 + dy 2 = ds2 = S'(z) dz dz,

hence

ds = v/S'(z) dz,

k = curvature of C = is''j2(S')3/2,

Ik I = tiS" [.

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

One may therefore speak of S"(z) as the "complex curvature" of C.
The Schwarz function for a closed analytic curve C can be expressed in
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terms of the mapping function of C. Let w = M(z) be any analytic function
which performs a 1-1 conformal map of C and its interior onto the closed unit
disc. Let z = mew) designate its inverse. Then

S(z) = m(ljM(z». (2.27)

The point ZR = S(z) is the Schwarzian reflection of the point z in the
analytic curve C. In virtue of this fact, S(z) satisfies the functional equation

S(S(z» - z.

(See Davis and Pollak [6, p. 7,23].)

3. SOME SPECIAL CURVES AND REGIONS

(2.28)

There are a number of ways in which special curves are commonly and
conveniently represented. These include equations in rectangular and polar
coordinates, level lines of analytic functions, mapping functions from a
straight line or a circle onto the curve, etc. In this section, we shall exhibit
a number of specific curves where the Schwarz function can be obtained as an
explicit elementary algebraic function. The examples are intended to be
representative and not exhaustive.

3.1. Rectangular Coordinates

2

Z = S(z) = zo + _1'_ .
Z - Zo

(3.1.1)

Thus, S(z) has a simple pole at Zo • It can be shown (see Davis and Pollak [6])
that the circle is the only curve whose Schwarz function is a rational function
of z.

(b) Ellipse: (x2ja2) + (y2jb2) = 1. Assume a > b. Setting

x = (lj2)(z + z),

and solving for z we obtain

y = (lj2i)(z - z),

- _ S( ) - a
2+ b

2 + 2ab • / 2 b2 2
Z - Z - 2 b2 Z b2 2 V Z + - a •a - -a

(3.1.2)

Thus, S(z) has bracnh points at z = ±va2 - b2, the foci of the ellipse.
In the z plane cut from -va2 - b2 to va2 - b2 , S(z) can be defined as a
single-valued analytic function.
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(c) The L4 gauge curve: x 4 + y4 = 1. Using (2.1) and solving for ::E,
we obtain

(3.1.3)

This curve bounds a convex region and inside the curve S(z) has singularities
only at the points where Z4 + 1 = 0, i.e., at z = ±(l/2)(v2 + v2 i).

3.2. Polar Coordinates

In preparation for the next group of curves, observe the identity

cos nB = ! (e ine + e-in8) = _1_ [(re i8)n + (re- i8)n'j'
2 2/,'n' ,

Hence, if 17 is even,

(a) The rose R 2m •

(3.2.1)

r2m = a + b cos 2mB,

Using (3.2.1) we obtain

0< I b [ < a, Tn = 1,2,00.. (3.2.2)

Hence,

7" _ _ [a ±va2 - b2 + 2bz2mll/m
~ - S(z) - z 2 2 b .z rn - ..:

As special instances of this curve, we cite

The Bicircular Quartic Q,

(m = 1) which we write in the form

(3.2.3)

(3.2.4)

(3.25)

The quantiy under the radical vanishes when z = ±i V'a 2 + (a4/4E2). Since
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a4/4e2 > 0 and r = a when e= 7T/2, 37T/2, these points lie outside the curve.
Hence, inside the curve, S(z) can be defined as a single-valued analytic
function with simple poles at z = ±e.

(b) The rose R4 •

r4 = a4 + 2b4 cos 4e,

This leads to

(3.2.6)

The quantity under the radical vanishes at the points

(3.2.7)

that these points lie exterior to the curve. Hence, there is a single-valued
branch of S2(Z) inside the curve with simple poles at z = ±b, ±ib.

3.3. Level Lines

Let 4>(z) be a function of a complex variable. A level line of 4> is the locus
of z's such that

I 4>(z) I = C > o. (3.3.1)

(a) A common family of level lines are the generalized lemniscates ~r

given by

IPn(z) I = rn or (3.3.2)

where the polynomial Pn(z) has been given in its factored form on the right.
On the geometry of these curves, see Walsh [19, p. 55]. We can write this as

IPn(z)12 = Pn(z) Pn(z) = Pn(z) Pn(z) = r2n.

If Pn(z) = L~=o akzk, we write Pn(z) = L~~o akzk
•

Hence, on ~r, we have

(3.3.3)

(3.3.4)

The function Pn(S(z» is the rational function r2"jPn(z) with poles at Zl ,... , Zn
while the Schwarz function S(z) for 2>,. is the algebraic function of z obtained
by solving (3.3.4) for S.
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As a particular instance, if Pn(z) - Pr.(z) == zn - 1, we obtain

.nj7n+ ..2" - 1z = S(z) = 'V---z-,,-'--:C-
1

-

For n = 2, we obtain the ovals of Cassini.

(3.3.5)

4. CONVERSION OF DOUBLE INTEGRALS TO OTHER FUNCTIONALS

Using the complex form of Green's theorem and an explicit representation
of the Schwarz function, a double integral of an analytic function may often
be given another representation. The exact nature of the representation
depends crucially on the singularity structure of S(z) inside its curve. From
(2.2.1) we obtain for analytic fez),

II 1 ' l'
fez) dx dy = -2' j zf(z) dz = -2" S(z)f(z) dz,

B l • OB l • OB

We have more generally from (2.8), for integer n ;> 0,

I r 2',/(Z) dx dz = , 1 J' zn+lf(z) dz
• B 2l(n + 1) OB

1 J'= 2i(n + 1) OB (S(z))n+lf(z) dz.

(4.1)

(4.2)

We are now at liberty to change the path of integration by Cauchy's theorem
or to apply residue calculus.

We shall work out some examples,

(a) Circle C: I z I :( 1', S(z) = r2/z.

rf - 7Tr 2n
+2n ! r fez)

, z"f(z) dx dy = 2 .( -L r I n+1 dz
•• C 7Tl n I } •• oc z

(n = 0, 1,...). (4.3)

The case n = °yields the mean-value theorem for analytic functions.

(b) The half circle HC: x 2 + y2 :( 1'2, Y ;> O.

f ' 1 f 1 e
r 1 r .I. fez) dx dy = -2' zf(z) dz = -2' J xf(x) dx + -2' zf(z) dz .

• oHC l HC l -,. 1 • C
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Here C designates the circular arc traversed positively. Now

1 I - 1'2 I fez)-2' if(z) dz = -2' - dz
1 C 1 C Z

and we replace C by a deleted x axis augmented by a half circle C' of radius €

traversed positively,

~ I fez) - 1'2 IE f(x) ~ I-r f(x) 1'2 I fez)
2 · dz - 2' dx + 2' dx + 2' dz.
lcZ lrX l_EX lC'Z

Now,
2 f( ) 2 1T

~ I _z_ dz = !- J' f(€e i8) de.
21 c' z 2 0

Hence,

lim Y~ I fez) dz = 7Ty
2

f(O).
E....O 21 c' z 2

Thus, finally,

II 1 Ir y2i J.r f(x) 7Ty2
HCf(Z) dx dy = 2i -r xf(x) dx +"2 -r -X dx + 2 f(O). (4.4)

In the second integral on the right, the Cauchy principal value is meant.

a> b.

S( ) - a
2 + b

2 + 2ab V 2 b2 _ 2
Z - a2 _ b2 z b2 _ a2 Z + a .

The first term of S is a regular function in 6'. Hence

II fez) dx dy = '(b2ab 2) I VZ2 + b2 - a2f(z) dz
B 1 -a f){f

= ,ab I va2 - b2 - Z2 fez) dz.
b2 - a2 f){f

The function va2 - b2 - Z2 is single valued in the plane slit along
-va2 - b2 ::( X ::( va2 - b2 , Hence, we may shrink the curve 06' until it
coincides with the slit traversed twice; the lower edge from -va2 - b2 to
va2 - b2 and the upper edge back. On the first traversing, dy = dx and the
radical is -va2 - b2 - x 2 ; on the return, dz = -dx and the radical is
+va2 - b2 - x2 •
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It is often convenient to place the foci of tff at ±l. Write a = tCP + p-l),
b = tCP - p-l) and designate by g p the ellipse with foci at ± land semiaxis
sum a + b = p. Then, 2ab = tcp2 - p-2) and

"J" 1 J.-+-1J fez) dx dy = -2 (p2 - p-2) ,/1 - x2f(x) dx. (4.5')
{j'p -1

This formula was first obtained in Davis [2] through the double ortho­
gonality of the Tschebycheff polynomials of the 2nd kind.

(c) Bicircular quartic Q: r2 :(; a2 + 4€2 cos2 e.

z(a2 + 2€2) + z ,/a2 + 4a2€2 + 4€2Z2
S(z) = 2(Z2 _ (;2) ,

J'J' fez) dx dy = )7T. f S(z)f(z) dz.
Q _7Tl OQ

Since the only singularities of S(z) are simple poles at z = ±€, we need only
evaluate the residues at ±€. For z = € we have

w 2 + 2€3 + w 2 + 2€3
4€

A similar result holds for z = -E. Hence,

.,
a"" I .')

= 2 T €-.

The selectionf(z) ~ z2rn, and evaluation of the left-hand integral in polar
coordinates yields the integral identity

2rrr ei2mO(a2 + 4€2 cos2 e)"'+1 de = (2m + 2) 7T(a2 + 2€2) €2m. (4.7)
• 0

For m = 0 we obtain

rr dx dy = area(Q) = 7T(a2 + 2€2).
•• Q

(4.8)
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More generally, we have for n ?: 0 by (4.2),

II z''f(z) dx dy = . 1 J" sn+l(z)f(z) dz.
o 21(n + 1) iJo

For simplicity, write

so that sn+l(z) = [Nn+l(z)j(z - E)-n+1(Z + E)n+I] and this function is regular
inside oQ except at z = ±E where it has poles of order n + 1. Hence,

II -n , - 7T 11! J' Nn+l(z)
o z 'fez) dx dy - (1i + I)! 27Ti GO (z _ E)n+l(Z + E)n+l fez) dz

_ 7T \ dn (Nn+I(z)f(z)) I
- (n + 1)! Idz n (z + E)n+l z~.

(4.10)

= (1i ~ I)! [anof(E) + and'(E) + ... + annf(n)(E)

+ bnof(-E) + bnd'(-E) + ... + bnn!(n)( -E)],

where the constants an/,; and bnT.; are independent off and may be obtained
explicitly by expanding the above bracket.

The formulas just developed have a harmonic counterpart. Let u(x, y)
be harmonic in Q. Then, as is well known, if we construct

I
(x.<y)

vex, y) = -Uy dx + Ux dy,
C"o.Yo)

for an arbitrary (xo , Yo) in Q, the functionf(z) = u(x, y) + iv(x, y) is single
valued and analytic in Q and has U as its real part. Now by (4.6),

II0 (11 + iv) dx dy = 7T ( ~- + E2) [U(E,O) + iV(E,O) +U(-E,O) + iv( -E,O)].

Taking real parts we find

ffQ u(x, y) dx dy = 7T (~~ + E2) (U(E, 0) + u(-E, 0)). (4.11)

This is an extension of the mean-value theorem for harmonic functions. This
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identity suggests several questions. It is known that a necessary and sufficient
condition for u to be harmonic in a region G is that

1 ."
u(zo) = 7Tr 2 JJIz-zokr u(x, y) dx dy

for all Zo E G and all sufficiently small r. Can a similar result be obtained for
(4.11)? What about a theory of subharmonic functions based on (4.11)?

Inequalities for Harmonic Functions

Let Cr designate the circle I z I <: r. In view of the obvious inequalities
a2 + 4E2 ;:?: a2 + 4E2 cos2 e ;:?: a2, it follows that if we set b = va2 + 4E2,

we have Ca C Q C Cb • If now u is harmonic and nonnegative in Cb ,

J"J" u dx dy ;:?: J"J' u dx dy ;:?: rr u dx dy.
c. Q •• Ca

Hence
. 2

7T(a
2 + 4E2

) u(O, 0) + 7T (T + E2
) (u(E, 0) + u( -E, 0» ;:?: 7Ta

2u(O, 0).

Therefore

a2 + 4E2 1 a2

~-L-29 u(O, 0) ;:?: 2- (u(E, 0) + u(-E, O»;:?: 2 + 2 2 u(O, 0). (4.12)a I E~ a E

Inside R4 , 5 2(z) has only simple poles at z = ±b, +bi.

fj" zf(z) dx dy = 4
1
. J' z2f(z) dz = ~ -2

1
. f 5 2(z)f(z) dz.

R, loR, - 7T1 OR,

The residue at z = b is

and similarly for the other points. Hence,

U zf(z) dx dy = i1~ [feb) - if(ib) - fe-b) + if( -ib)]. (4.13)
, R,
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In view of the singularity structure of S(z), HRJ(Z) dx dy may be reduced
to two line integrals extended from b to bi and from -bi to -b. Thus, for
even values of n, HR. znf(z) dx dy will be a functional of that type while for
odd n, it can be reduced to an interpolation functional.

(e) Lemniscates. We begin with the lemniscate (3.3.5) with n = 2 and
r > 1. Call it OC (oval of Cassini). We have

z = S(z) = I Z2 + r
4

- 1
'\j Z2 - 1

as the Schwarz function for Oc. The zeros of the numerator are at
±ivr4 - 1 and these points are exterior to Oc. Hence S(z) is single valued
in the interior minus the cut -1 ~ x ~ 1. We have

II fez) dx dy = )1. J' I Z2 ~ r
4
~ 1 dz,

oe _1 ooe 'V z-

and shrinking 80C to the cut, there is obtained

J'J' ,+1 ~ x
2 + r

4
- 1fez) dx dy = J - 1 2 f(x) dx.

oe -1 - X
(4.14)

If r < 1, the Cassinian oval consists of two lobes. Looking at the right
lobe, S(z) will have branch points at z = 1 and at z = VI - r 4• An
analogous formula to (4.14) extends the real integral over ,/1 - r 4 ~ x ~ 1.

(f) Lemniscates, continued. Let Zl ,... , Zn be 11 points in the complex
plane, not necessarily distinct. Let p(z) - (z - Zl) ... (z - zn), and let r be
selected so large that the locus Ip(z)1 = r n consists of one closed curve
containing Zl ,... , Zn in its interior. Designate the set Ip(z) I ~ r n by 2,.
On 82, we have p(z) = r 2n jp(z). From (2.8) we have

II -, 1 r - 7Tr 2n I fez)p (z)f(z) dx dy = -2' p(z)f(z) dz = -2. -() dz.
2. 1 • of£'. 7Tl 02, P z

Now, if Zi are distinct,

(4.15)

= the n-th divided difference off(z) with respect to the points
Zl ,... , Zn'

In the case of multiple points, the contour integral equals the generalized
divided difference. (See Davis [3, Chapter 3].)
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JJ p'(z)j(z) dx dy = 7or 2n [f(zl),···,/(zn)]' (4.16)
2 r

If the points Z'i are spaced uniformly, then the divided difference becomes
the ordinary n-th-order difference. Let p(z) = z(z - 1) ... (z - n) and
ePr : i p(z)! ~ rn+1. Then,

IJ p'(z)j(z) dx dy = 7or 2n +2[f(0),/(1), ... ,/(n)]
2,

= 7or 2n+2 .:J. "j(O)/I1!. (4.17)

Another special case arises if we select fez) = p'(z) in (4.15). From the
argument principle we have

1 . p'(z)
270i JO!Z'r p(z) dz = n.

Hence

JJ Ip'(Z)[2 dx dy = 117or 2n .
!Z',

(4.18)

This equality may be phrased in an alternate way. For fixed Zl , Z2 ,... , Zn ,
let D(f) designate the divided difference ofJat Zl ,... , Zn . Then, from (4.16),

D(f) =~ J'J' p'(z)j(z) dx dy.
7or- !Z'r

Thus, over the Hilbert space V(eP,.) (see, e.g., Davis [3, p, 207] for this space),
the function p'(z)/7or2n is the representer of the functional D, and the norm
of D is given by

("' I p'(z) 1
2 l ' . n

I D I~" = JJ!Z', 7T!.2n dx dy = 7021'4" JJ!Z', ! p'(z)1
2

dx dy = 7Tr2n '

Hence,

(4.19)

Suppose that p(z) has zeros at Zl ,... , z" of multiplicity (Xl " •• , (Xn' Let
N = (Xl -i- CX2 + ... + CX n , p(z) = (z ~ Zl)'''1 ... (z - Zn)cr n, ePr : [p(Z)[ ~ rN.
For analytic j, we have from the residue theorem,

1 . p'(z) n

-2. J -()j(z) dz = L CX,j(Zk)'
7Tl o!Z'r P Z k~l
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If I p'(z)12 fez) dx dy = 7T1.
2N I. rxd(z/;;). (4.20)

~r /;;~l

Divided differences are closely related to remainder formulas for poly­
nomial interpolation. Let Zo , Zl , •.• , Zn be points of the complex plane (not
necessarily distinct) and let p,i!; z) designate the unique polynomial of
degree ~ n which interpolates to an analytic function! at these points.
(If there are multiple points present then the interpolation is understood in
the generalized sense.) Let

Rn(f; z) = fez) - Pn(f; z).

Then (see, e.g., Davis [3, p. 67])

(4.21)

This leads to the following formula which can be regarded as an analogue
of the well-known Hermite formula for the remainder in polynomial inter­
polation.

Let z be regarded as a fixed point and set

pet) = (t - z)(t - zo) ... (t - zn), t = u + iv. (4.23)

pet) is a polynomial of degree n + 2. Let r be selected so large that the set

~. : I P(t)1 ~ r n+2

contains z, Zo , ... , Zn in its interior.
Hence from (4.16) we obtain

(4.24)

Thus, over the space P(2?r), the function

I ( ) = (z - zo)(z - Zl) ... (z - z,,) P'( )
1 t 7Tr 2n+4 t

is the representer of the remainder functional Rn(f).
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We have

by (4.18). Hence

~n+ ?I'7 ~1"'17 ~l
II R II = _._- - - '"0 . - - '"n •

n 2 r n r ft+2

291

(4.26)

(g) Maps. Let B be a simply connected region of the z plane containing
z = 0 and suppose that

z = melt'), m(O) = 0

maps the unit circle i w [ :;::;; I one-to-one conformally onto B. We have

rj' zpf(z) dx dy = . I r zP+lf(z) dz
• B 21(p + 1) • oB

= 2'( 1+ 1) r (m(w))P+l f(m(w) m'(w) dw
1 p . :wl~1

= ~1-21. r mP+l (_1_)' f(m(w»m'(w) dw.
p + 7Tl • 1,"1~1 W '4 ?"1\

\ ._I}

We now make the special hypothesis that the mapping function mew) is a
polynomial of degree q ?: 1,

mew) - a IV + a w2+ ... --:- a w- 12 ,q q (4.28)

Note conversely, that if we start with a polynomial of the form (4.28) and if
a2 , a3 , ••• , aq are all sufficiently small with respect to Gl , mew) will be univalent
in the unit circle and hence will map it onto a simply connected schlichtregion.
Now mP+l(w) is a polynomial of degree s = q(p + 1) which can be written
in the form
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where the b's are determined from the a's. Hence, by the residue theorem,

fLzPf(z) dx dy

- _7T__I_ J' ('5 L + ... + 5s_p(s - I)! )f(m(w)) m'(w) dw
- p + 1 27Ti [U'I~1 I l'I'P+l WS

7T - -
= p + 1 [bICf(m(w)) m'(w))IP) Iw~o + ... + bs_p(f(m(w)) m'(w))IS-ll Iw~o]

Q(D)f(O), (4.29)

where Q(D) is a linear differential operator of order s - I whose coefficients
depend upon mew) but are independent of fez).

EXAMPLE.

mew) = w + aw2
, m'(w) = 1 + 2aw, m"(w) = 2a, mew) = w + aw2

•

Now for a sufficiently small (I a I < l), mew) is univalent in the unit circle
and hence maps onto a region B. Now

f ' l' (1 a)J fez) dx dy = 7T -2. J f(m(w)) m'(w) -, + 2 dw
B 7Tl [Wl~l 10\. W

= 7T[(1 + 2 I a 1
2)f(0) + ar(O)]. (4.30)

We next investigate the case where the mapping function is a general
rational function. Let

(4.31)

where 0 < I cxi I < 1, and let

where the f3i are distinct from CXI , CX2 , ... , CXn • Let

Q(w) = wnp(ljw) = (I - cxlw)(1 - cx~w) (I - cx"w),

Sew) = wPR(1jw) = (1 - f3 l w)(1 - f32W) (1 - f3pw),

and consider for a =f:- 0,

(4.32)

(4.33)

awS(w)
mew) = Q(w)

=aw+ ....

aw(1 - f3IW) (1 - f3pw)
(1 - cxlw) (I - cxnw)

(4.34)
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For values of ex; and 13; sufficiently small, it is clear that mew) is univalent iu
i w [ :s:; 1 and hence z = mew) maps the circle 1-1 conformally onto a
region B in the z plane.

The function m'(w) = [awS(w)jQ(w)]' is regular in i w I :s:; 1. Now

m(_I)=
w

a(l/w)(l - (31/lV) ... (l - (3p/ w)
(l - iidw) ... (1 -in/w)

awn -
p- 1(w - (31) ... (w - (3p)

(w - <i 1) ... (w - <in)

aw"-P-1R(w)

pew)

Now if 11 ?': p + 1, the function m(ljw) has poles at ex1 , ... , tin and no other
singularities. If n < p + 1, then m(ljw) also has a pole of order p + 1 - n
at w = O.

We have

ri fez) dx dy
•• H

1 J' , 1 )= 'TT?, f(m(w» m'(w)m 1-.- dw
_'TTl 'WI~l \ w

= 'TT~ f f(m(w» m'(w) aH,n-
p
-l(w - (31) ... (w ~ (3p) dw. (4.35)

2m Iwl~1 (w - 0'1) ... (w - ~n)

If we now assume that 11 ?': p + 1 and that the points exi are distinct, then we
have by the residue theorem

Tn -71-71-1(- 13- ) f- S .II fez) dx dy = 'TTa L f(m(iik» m'(ii,JJ:,:' J:" - ,1'" ~ex" -, p) ,

H "~1 P (rx,J (4.36)

Thus, we have an identity of the form

... • n

JJ fez) dx dy = L c,J(z,J,
B "~1

(4.37)

where the coefficients c" and the abscissas z" = m(ex,,), are independent off
If the 0'; are not distinct, then each point of higher multiplicity Tk contri­

butes a differential operator of order T/';-l evaluated at i5." •
If 11 < p + I then the point ex = 0 is a pole, and hencef(O) (m(O) = 0) is

present by itself if 11 - P - 1 = -lor with its higher derivatives if
n - p - 1 <-1.

If \ve require the higher moments HB z'f(z) dx dy, we have from (4.27)

rf z1 (z) dx dy = ~~ J' f (m(w» m'(w)(a}"+1 w(n-p -1l\,,+U
• H r + 1 2m Iwl~l

X [(w - (31) (It' - (3p)Y+l dw
[(w - iiI) (w - 0:,,)]'+1 .
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We shall not write out an explicit formula for this, but merely observe that
at each point iii and possibly at IX = 0, we obtain a differential operator of
order r. Thus, we can write

I I 2'f(z) dx dy = t ±c"J{il(m(ixn)) + ±dd(i)(O), (4.38)
B k~l ;~O i~O

for constants ck ; , di independent of f The d;'s will all vanish if n ~ p + 1.

EXAMPLE.

pew) = w - IX Q(w) = 1 - exw, 1 ex 1 < 1,

R(w) - 1,

mew) = wl(l - exw) m'(w) = 1/(1 - exW)2,

m(llw) = I/(w - ii),

II
fez) dx dy = 2

TT
• r f( 1 w ) (l 1 r _1__ dw

B TTl • Iwl=l - exW - exW • W - ex

= (1-~exI2)2fC ~lexI2)

and we recover (4.3) with n = 0 in another form inasmuch as the image of
1 w I = 1 under m is a circle with center at ii/(l - 1 ex 1

2) and radius
1/(1 - I ex 1

2
).

EXAMPLE. Let mew) = w(1 - ~2W2)/(1 - ex2W2), 0 < 1 IX 1 < 1, ~ =1= ±ex,
n = p = 2, n - p - 1 = -1. Take IX and ~ sufficiently close to 0 so that
mew) is univalent in the circle I w 1 :(; 1 and maps it onto a B.

m (_1_) = 1.-. (w
2

- {32) .
W W (w2 - ex2)

I I/(z) dx dy = Af(z*) + Bf(O) + Af(-z*), (4.39)

where

z* =

A=

iX(l - ~2iX2)

1 - I ex 1
4

'

1 + I a 1
4

- W2iX2 + f32iX2
1 ex 1

4

1 - 1 ex 1
4
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5. ApPLICATION OF KERNEL FUNCTIONS
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We now turn our attention to a general problem. We are given a linear
functional L applicable to a class R of analytic functions and whose further
requirements will be specified shortly. (Think of L as an integrodifferential
functional.) We wish to find (if possible) a region B in the z plane with the
property that L has a representation as a double integral over B. That is,

rf fez) dx dy = L(f),
•• B

fEK (5.1)

It simplifies our thinking if we work with K = a Hilbert Space of analytic
functions, for example PCB). Let K(z, w) be the Bergman kernel function of
PCB). If L is a bounded linear functional over V(B), then its representee is
given by

I'(z) = LwK(z, w). (5.2)

See Davis [3, p. 318]. The 11' in the subscript in L w means that the operation is
to be performed on the w variable.

In other words,

L(f) = fj' I'(z)f(z) dx dy = (1',/),
• B

If I'(z) == 1 as in (5.1), then we have

fEV(B). (
c: .."

,.J.Jj

(5.4)

This is a necessary and sufficient condition for (5.1), and our problem,
therefore, is: can a region B be found for which (5.4) holds? This criterion
can be recast in several different forms. Let {'nCz)} be a complete orthonormal
system for V(B), then

00

K(z, 11') = L: 'n(z) 'nCw).
r/=O

(5.5)

In view of the boundedness of L, L is applicable term by term to the right
hand of (5.5) and hence we need

00

L: 'n(z) L(Sn(w») == l.
n=O

(5.6)

If, as frequently happens, '0 can be taken as a constant; c = l/varea (B),
then (5.6) is equivalent to

e L(e) = 1,
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Thus,

DAVIS

L(1) = JJ dx dy = area (B).

This fixes the area (B), and the higher moments.
Progress can be made in the following way. Assume B is a simply connected

region. We have

K(z, w) = (1/17)[m'(z) m'(w)/(1 - m(z) m(w»2], (5.7)

where m(z) performs a 1-1 conformal map of B onto the unit circle. Thus,

1 (m'(z) m'(w) )
1 = --:;; L w (1 _ m(z) m(w»2 . (5.8)

This is a functional-differential equation, to be solved for a mapping function
m(z). Assuming we have solved it, the inverse map will give us the region B.
However, trivial examples show that this problem may not have a solution.
For instance if LU) = 1'(0) = HE!dx dy we obtain a contradiction by
setting! - 1. Thus, an interesting and significant open problem is: how can
you characterize those functionals L for which there is a solution to (5.1)
or (5.4)? If there is a solution, is the solution unique in some sense? Is it
unique if the region B is restricted to be simply connected?

Further reduction of (5.8) is useful. We have

1 - 1.- f (n + 1)(m(z»n m'(z) L[(m(w»n m'(w)], (5.9)
17 n~O

the convergence being absolute and uniform for I z [, [ w I :'(; 1 - o. Thus,

1 d OCJ

1 = - d- L (m(z»n+1 L[(m(w»n m'(w)].
17 Z n~O

Integrating from z = 0 to z = z in Iz I < 1,

OCJ

17Z = m(z) L (m(z»n L[(m(w)Y' m'(w)],
n~O

OCJ

17Z = m(z) L w L [m(z)]n (m(w»n m'(w)
n=O

- ( m'(w) )= 111(Z) L w . ;
1 - mew) m(z)

(5.10)

(5.11)

(5.12)



or,

DOUBLE INTEGRALS AS SINGLE INTEGRALS

- d 1 -
7TZ = -m(z) LU' - = log(l - m(z) me}!'»~

dw m(z)

d -
-7TZ = L w -d logO - m(z) mew»~.

IV

197

(5.13)

EXAMPLE (a). L(f) = 7TR2j(O). With this functional, (5.11) becomes

7TZ = m(z) 7TR2m '(O).

Differentiating,

so that

m'(O) = (ljR) ei </;.

Hence,

z = m(z)(R2jR) e-i<b

and

m(z) = ei<bjR)z.

Thus, B is the circle I z! ~ R, and we recover (4.3) with n = O.

EXAMPLE (b). Our second selection leads to a new result. Let

.+1
L(f) =, I(x) dx.

• -1

With this functional, (5.13) becomes

f
+1 d -

-7TZ = -100-(1 - m(z) mew»~ dw
-1 dw 0

= log(1 - m(z) m(1» - log(l - m(z) m(-1» (5.14)

1 (
1 - m(Z) m(1) )= og

1 - m(z)m(-l) .

To obtain symmetry we shall make the specialization

m(O) = 0, m(-1) = -m(l) = iX. (5.15)
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Inserting successively z = 1, z = -1 in (5.14) yields

err = (1 + [a 12)/(1 - [ a [2)

(5.16)

and these two are identical. Thus

I a [2 = (e" - 1)/(e" + 1) = (1 - e-")/(1 + e-"), (5.17)

or

We select e = 0, and then

o~ e~ 27T. (5.18)

Thus, from (5.14)-(5.16) and (5.19), we have as our mapping function

1 ( 1 - aw )
z = -log 1 + '7T (XW

or

1 ( 1 - e"Z ) 1 7T
W = m(z) = -;;- 1 + e"Z = - -;;- tanh 2 z;

2
z = - - arctanh aw.

7T

(5.19)

(5.20)

(5.21)

Observe that with 0 < a Ro3 0.958 < 1, as w traces the unit circle,
, = (1 - aw/l + aw) traces a circle that lies in Re' > O. Its center is at
(1 + (X2/1 - a2,0) and has radius (2a/1 - (X2). The image in the z plane of
I w [ = I under (5.20) is therefore schlicht. Since Im(±I)[ = a < I and
m(z) is real for z real, the segment [-1,1] is interior to this image. The
map (5.21) therefore defines a simply connected region B which solves the
problem.

The region B is an ellipse-like figure having a semimajor axis

a = 1/7T log(1 + a/I - a) Ro3 1.22

and a semiminor axis b = 1/7T arctan(2a/l - ( 2) Ro3 0.486.
We have used the theory of the kernel function to obtain conveniently

a solution to the problem of finding a B for which

f
+lfLfCz) dx dy = ~JCx) dx dy.
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But now that we have an answer, we can verify it directly and also obtain
second representations for the higher moments. We shall work with the
Schwarz function. We have

1 I 1 - (XW '
mew) = -log I 1 ),

7T \ + 0£H'

1 '1 - e"Z ,
M(z) =-1 \

ex \ 1 + e'rz,'

Now from (2.27),

, 1) 1 I 1 .- e"e"" ).
S(z) = m( M(z) , = 7T log ( e" _ e"Z I

(5.22)

(5.23)

(5.24)

Note that S(z) has logarithmic singularities at z = ±1 ± 2ki, k = 0, 1,2,...
and at no other place. The only singularities of S(z) within B are therefore at
z = ±l. By making a cut along the real axis from z = 1 to z = -1, we can
define a single-valued branch of S(z) inside B thus cut.

For -1 :::::.; x :::::.; 1 along the upper edge of the cut, we take

1 ( e'<C'e" - 1 )
Suez) = Supper = -;;; log , e" _ e"CC - i.

Along the lower edge of the cut we take

1 I e"'"e" - 1 )
SI(Z) = Slower = -log I _ . I + i.

7T \ e" - e"'"

Now,

ff fez) dx dy = 2
1
. f S(z)f(z) dz.

• B l GB

(5.25)

(5.26)

We now replace aB by a circuit consisting of -(1 - E) :(; X :::::.; 1 "- E
augmented by two circles of radius E at x = 1 and x = - L We obtain

f
. 1 _+1
J fez) dx dy = T J (Sl(x)f(x) - S,,(x)f(x» dx.

B l -1
(5.27)

The limiting process is valid since limE->o E log E = O. Hence, from (5.25) and
(5.26)

ff fez) dx dy = f1 f(x) dx.
B -1
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The higher moments now follows,

DAVIS

fI zPf(z) dx dy = . 1 J' SP+1(z)f(z) dz
B 21(p + 1) OB

= 2i(/+ 1) f:~ (Si'+l(x) - S:+\x))f(x) dx

1 I+1= 2i(p + 1) -1 ~-ix)f(x)dx,

where

(5.28)

_ (1 ( errxerr - 1) .)P+1 ( 1 ( errXerr - 1) .)P+1
~p(x) - -log x + I - - log x - I

n r-r n r-r

('1 ( errXerr - 1) )P+1= 2i 1m - log x + i .
n err -err

As particular examples, for p = l,

II
1 f+1 ( errXerr - 1 )zf(z) dx dy = - log f(x) dx.

B n -1 err - errx

Forp = 2,

(5.29)

(5.30)

II
1 I+1 ( errXe

rr
- 1 ) 1 j'+1z2j(z) dx dy = 2 log2 rr rrX f(x) dx - -3 f(x) dx. (5.31)

B n -1 e - e -1

6. CONSTRUCTION OF A SCHWARZ FUNCTION REGULAR IN A SLIT REGION

In the examples of (4.5) and (5.24) we have seen how, if the Schwarz
function for B is regular in a slit B, then the integral HB f dx dy can be reduced
to one of the form f~~ fL(x)f(x) dx. We wish next to construct general
regions B with this property. This can be done by the method of "opening up
the slit."

Fix an ex with 0 < ex < 1. Let 11'8 be the 11' plane with two slits [(1/ex), + 00],
[-(1/cx), -00] along the real axis. The plane w. is mapped 1-1 conformally
onto the circle Iu I ~ 1 in the u plane by means of the map

1 - ,/1 - cx2W2
u = F(w) = ex11' '

2u
11' = y(u) = cx(u2 + 1)

(6.1)
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For u = ei8,

1
ex cos e. (6.2)

Hence for -(7T/2) ~ e~ (7T/2), w goes from +0'.) to I/O( and back to +00

along the right slit. For (7T/2) ~ e~ (3/2)rr, w goes from -00 to -(ljcx)
back to - 00 along the left slit.

Let the image of [ w I = Ieic I = 1 in the w plane be called C. C is of course
contained in ! u I ~ I and its equation is

(6.3)

The image in the u plane of w = ±cx in the w plane is ±/3 \vhere
(3 = [1 - V(l - a4)]ju:2• We now introduce an arbitrary analytic function
H(u) subject to the following restrictions. (Some of the restrictions are
unnecessary and are to simplify the situation.) The function H will control
the shape of B.

(1) The function z = H(u) = alu + a2u2 + ... is regular in i u! < 1
and has real coefficients.

(2) H(u) is continuous in I u I ~ 1 or mildly singular on I u I = 1.

(3) H(u) is univalent in and on C. Let H( -(3) = a, H«(3) = b with
a < b.

The image in the z plane of C under H will be called B. The inverse function
of H will be called h. This inverse u = h(z) performs a 1-1 conformal map
of Bonta C. B contains the segment [a, b] of the real axis.

Consider now the function

z = rn(w) = H(T(w». (6.4)

This function is regular in lV s • It is univalent in [ w I ~ 1 (because the
image of I w I = I under r is C). The function z = mew) therefore maps
I w I ~ 1 one-to-one conformally onto Band oB, the boundary of B, is an
analytic curve.

Designate by B s the region B with a slit [a, b] along the real axis. We wish
to show that S(z), the Schwarz function for oB, is regular in B s • The inverse
of z = mew) is w = M(z) = y(h(z». Therefore

(since in = my.

S(z) = H(r(ljy(h(z»» (6.5)
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Now h(z) is regular in B s and takes values in Cs (C with the slit [-P, P]
removed). y(h(z» is therefore regular in Bs and takes values in I w I :s;; I,
slit; that is, I w I :s;; I with the interval [-IX, IX] along the real axis deleted.
Therefore ljy(h(z» is regular in Bs and takes values in W s - (I w I :s;; I).
r(ljy(h(z») is therefore regular in B s and takes values in (I u I :s;; I) - C.
Thus, finally, S(z) = H(r(Ijy(h(z») is regular in B s , as we were required
to show.

In view of the continuity (or mild singularity) of H(u) on I u I = I, it
follows that S(z) will be continuous from the interior of B s on the upper and
lower edges of the slit.

We wish next to determine those upper and lower functions. Call them
Sl(X) and Six).

We have z = x + iy. As x goes from a to b back to a, hex) goes from ~p

to p to -po y(h(x» goes from -IX to IX to -IX. With an obvious notation,
ljy(h(x» goes from -(ljlX) to - 00, + 00 to (ljlX), (ljlX) to +00, - 00 to
-(ljlX). For u = ei8, w = IjlX cos e; hence r(ljy(h(x») = ei8 with erunning
from -Tr to 0 as x goes from a to b and from 0 to Tr as x goes from b to a.
Thus we can write

Finally,

Sl(X) = H(eie)

Su(x) = H(ei8)

-Tr :s;; e :s;; 0,

o :s;; e :s;; Tr.

(6.6)

Jr fez) dx dy = 2
1
. J S(z)f(z) dz,

• BloB

and since S(z) is regular in B and continuous or mildly singular on [a, b]
we may collapse the contour 8B to [a, b] and we have

1 J 1 Jb-2' S(z)f(z) dx = -2' (Sl(X) - Su(x»f(x) dx.
1 oB 1 a

If, now, H(u) is an odd function then

Sl(X) = H(ei8
),

St.(x) = H(e-i8),

and therefore Sl(X) - Six) = H(eie) - H(e-i8) = 2i 1m H(ei8). Thus,

II fez) dx dy = r 1m H(ei8<xl)f(x) dx.
B -b

(6.7)

(6.8)

(6.9)
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Here eis determined from

cos e = rx2(h2(x) + 1)j2h(x),

We have further, in the case of H odd and real on the real axis,

303

(6,10)

Since HP+l(e- lO) = HP+1(e lO),

.. 1 ,.b . .JJ zPf(x) dx dy = -+1 J 1m HP+l(e'O)f(x) dx. (6.12)
B P-b

EXAMPLE. Select Z = H(u) - u; u = h(z) - z. This function obviously
has the required properties. Moreover it is odd. We have

1 - ,/1 - aJ

f3 = b = a2

The region B is identical to C. Now [ljy(h(x»] = [rx(x2 + 1)j2x]. Hence
cos B = [rx2(X2 + 1)j2x] and

. e_ ,/(rx2(X2 + 1) + 2x)(rx2
(X

2 + 1) - 2x) = t( _)
sm - rx2(X2 + 1) ~ _ X"

Further, 1m H(e lO) = sin eso that

• • ·13

JJ fez) dx dy = J '(x)f(x) dx.
B -8

7. ORTHONORMAL EXPANSIONS

(6. (3)

(6.14)

Suppose that B is a bounded, simply connected region of the complex
plane, whose boundary oB is an analytic curve. There exists a complete
orthonormal set of polynomials {Pn*(z)} (the degree of Pn* is n) for the
Hilbert space V(B), and for any fez) E V(B), we have the expansion

fez) = f (J,Pn*)Pn*(Z) = f (If f(Z)Pn*(Z)dXdY)Pn*(Z). en)
n~O n~O B •

This Fourier series converges uniformly and absolutely in compact subregions
of B. Since

CX nn =1= 0, (7.2)
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it should be clear from the preceding work that for certain special regions B,
the Fourier coefficients IfslPn* dx dy have alternate expressions as linear
differential operators or real integrals operating on f For example, if we
take B = the bicircular quartic Q, then from (4.10) we have

fJQz"f(z) dx dy = Rn(D)f(E) + Sn(D)f( -E), (7.3)

where Rn(D) and Sn(D) are certain n-th-order differential operators. They are
independent off In view of (7.2), we have

(J, p*) = ffQf(z)Pn*(z) dx dy = Rn*(D) fee) + Sn*(D)f( -E), (7.4)

where R n* and Sn* are the "orthonormalized" operators obtained from (7.3)
by substituting (7.2) in (7.4). The Fourier expansion (7.1) may now be written
in the form

00

fez) = L (Rn*(D)f(E) + Sn*(D)f( -E»Pn*(z). (7.5)
n~O

The orthonormality of the functions {Pn*(z)} can be expressed as the
biorthonormality

(7.6)

Iff(z) E P(Q), then (7.5) coincides with (7.1). The series (7.1) is therefore
simultaneously a complex orthogonal Fourier expansion as well as an
interpolation series. That is to say, the Fourier segments

N

IN(Z) = L (J, Pn*) Pn*(z)
'i"l=O

interpolate to I in the sense that

(7.7)

k = 0, 1, ... ,N, (7.8)

where we have written

T}.;g(z) = R}.;*(D) gee) + S}.;*(D) g(-E).

The norm ofIE L 2(Q) is given by

00

111112 = L 1Tk(f)]2.
n~O

(7.9)

(7.10)
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Furthermore, the characteristic minimum problem of finding

I = min rr If(z) - p(z):" dx dy
PE·"l'N· • Q
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(7.11)

(f!iJ N = class of all polynomials of degree :'( N), can be solved by inter­
polation. The minimizing polynomial p is given by

N N

p(z) = L (f, Pn *) Pn*(z) = I TnCn P" *(z)
'11=0 n=O

and is that polynomial p(z) of fJJ N for which

R,,JD) peE) + S,,(D) p(-E) = Rn(D)f(E) + S,,(D)f( -E)

The minimum value itself is given by

(7.12)

n = 0, 1,... ,N.

•• N

I = IJ 1/12 dx dy - L i Tn(f)i2 = L I Tn(f)1 2
•

• Q n~O N+l
(7 13)

However, a formal series of type (7.5) can be defined for much wider classes
of functions than V(Q); it suffices for fto have all derivatives at z = ::1::<'.
The convergence, summability, etc., of such generalized Fourier expansions
is then open to discussion. Similar remarks apply to other special regions.

Let the function z = ep(w) = w + Co + C1W-1 + C2W-2 + ... map the
region I wi> 1"0 conformally onto the complement of B. If aB is an analytic
Jordan curve, then ep(w) may be continued in an analytic and schlicht manner
across the circle I w I = 1"0 to certain values I' < 1'0' Let B,. designate the
complement of the image of I w I ?o I" under f.

It is known (see for example Smirnov and Lebedev [16], particularly
Section 3.3), that if fez) is regular in merely B,., then it may be
expanded uniquely into a series of orthonormal polynomials for B:
fez) = L~~o C n p,,*(z). This expansion possesses the usual "Maclaurin"
properties of power series.

The present paper serves to identify the coefficients Cn in terms of inter­
polatory or other familiar integral operators. A comprehensive theory would
be useful here. The work of J. L. Walsh and P. J. Davis [7] and Walsh [18] is
also to be consulted in this connection.

Finally, it should be pointed out that one and the same special region may
have associated with it several different sets of orthonormal polynomials
[not both of the form (7.2)] and the related inner products both admitting
interpolatory- or moment-type interpretations.

Consider, for example, the oval of Cassini, OC,

I Z2 - I 1= 1", I' < I (right-hand lobe). (7.14)
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IfPn*(z) are the orthogonal polynomials of type (7.2), it is clear from the
work around (4.14) that the inner products (f,Pn*) in D(OC) may be
expressed as a linear combination of differential operators at z = 1 and of
integrals extended over the segment vi 1 - r4 :::;; x :::;; 1.

On the other hand, the function

w = (ljr)(z2 - 1) (7.15)

maps OC 1-1 conformally onto the circle I w I <; 1. Hence, (see, e.g.,
Davis [3, p. 325]) the polynomials of degree 2n + 1,

are also complete and orthonormal for L2(0C).
If fez) is expanded in a series of q.n's,

n = 0, 1, ... (7.16)

00

fez) = L cnqn(z),
n=O

(7.17)

the change of variable (7.15) leads to the identification

= ~ [f(v"ITrW)]<n>
Cn • / •

n! vI +rw ,"=0
(7.18)

Each Cn is therefore an n-th-order differential operator onfat z = 1.
The two sets of polynomials are, of course, related by a unitary transfor­

mation and hence also the corresponding Fourier coefficient functionals.
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